赛后,特邀专家与比赛评委团对赛题和一等奖作品做了多角度的点评与分析。
中国科学院大学人工智能学院副教授缪青海表示,机器学习中,数据、算法是核心要素。数据分布的复杂性为模型架构的选择和后续训练带来挑战。针对‘变频器半导体温度预测’AI建模,上海交通大学参赛队利用行业领域先验知识,将数据依据工况分类,其本质上类似于将数据空间复杂流形进行分片,每一个分片是一个具有相对简单结构的子流形。在子流形上,可采用相对简单的模型即可取得理想的效果,训练变得更加容易,推理性能更加高效。通过引入领域知识对数据进行前处理,该方法有较好的普适性,在多个领域有较好的推广前景。
ABB中国运动控制部技术专家、ABB杯创新大赛评委团成员孟金磊、邢承彦、杨晓茹提到,面向工业预测类算法场景,获奖选手对赛题理解深入、建模流程清晰,考虑了多工况下特征与预测目标之间关系的差异性,采用差分、组合、变换等特征工程方法,同时从机理角度提取关键特征,根据不同工况尝试不同复杂度的回归模型及集成学习方法,最终模型具备较高的鲁棒性和推理速度。
瑞典皇家工学院KTH兼任教授、ABB瑞典研究院资深主任科学家庞智博说到,这次比赛的选题是AI在工业电子和自动化领域应用的热点和难点问题之一。经过近几年大量头部企业和学术团队的探索,大家的关注点已经从数据和模型的有无问题,转变为数据和模型的实用性问题,甚至是数据和模型的‘去粗存精’的问题。获奖团队采取了领域知识与AI建模深度融合的策略,完全符合行业的共识和趋势。进一步地,他们根据对电力电子器件工况的深入理解,有效化简了数据空间,提高了算法的精度和运行效率。这些进展,对解决这一大类工业数据和AI模型的去粗存精问题,都有启发意义。同时这个工作也完美地展示了,跨学科的知识结构和人才培养,对实现工业AI落地的重要性。

Copyright © 2022-2024 厦门雄霸电子商务有限公司 版权所有 备案号:闽ICP备14012685号-33